skip to main content


Search for: All records

Creators/Authors contains: "Ganesh, Arun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ligett, Katrina ; Gupta, Swati (Ed.)
    We give the first closed-form privacy guarantees for the Generalized Gaussian mechanism (the mechanism that adds noise x to a vector with probability proportional to exp(-(||x||_p/σ)^p) for some σ, p), in the setting of answering k counting (i.e. sensitivity-1) queries about a database with (ε, δ)-differential privacy (in particular, with low 𝓁_∞-error). Just using Generalized Gaussian noise, we obtain a mechanism such that if the true answers to the queries are the vector d, the mechanism outputs answers d̃ with the 𝓁_∞-error guarantee: 𝔼[||d̃ - d||_∞] = O(√{k log log k log(1/δ)}/ε). This matches the error bound of [Steinke and Ullman, 2017], but using a much simpler mechanism. By composing this mechanism with the sparse vector mechanism (generalizing a technique of [Steinke and Ullman, 2017]), we obtain a mechanism improving the √{k log log k} dependence on k to √{k log log log k}, Our main technical contribution is showing that certain powers of Generalized Gaussians, which follow a Generalized Gamma distribution, are sub-gamma. In subsequent work, the optimal 𝓁_∞-error bound of O(√{k log (1/δ)}/ε) has been achieved by [Yuval Dagan and Gil Kur, 2020] and [Badih Ghazi et al., 2020] independently. However, the Generalized Gaussian mechanism has some qualitative advantages over the mechanisms used in these papers which may make it of interest to both practitioners and theoreticians, both in the setting of answering counting queries and more generally. 
    more » « less
  2. null (Ed.)
    Various differentially private algorithms instantiate the exponential mechanism, and require sampling from the distribution exp(−f) for a suitable function f. When the domain of the distribution is high-dimensional, this sampling can be challenging. Using heuristic sampling schemes such as Gibbs sampling does not necessarily lead to provable privacy. When f is convex, techniques from log-concave sampling lead to polynomial-time algorithms, albeit with large polynomials. Langevin dynamics-based algorithms offer much faster alternatives under some distance measures such as statistical distance. In this work, we establish rapid convergence for these algorithms under distance measures more suitable for differential privacy. For smooth, strongly-convex f, we give the first results proving convergence in R\'enyi divergence. This gives us fast differentially private algorithms for such f. Our techniques and simple and generic and apply also to underdamped Langevin dynamics. 
    more » « less
  3. Czumaj, Arturr ; Dawar, Anuj ; Merelli, Emanuela (Ed.)
    Robust optimization is a widely studied area in operations research, where the algorithm takes as input a range of values and outputs a single solution that performs well for the entire range. Specifically, a robust algorithm aims to minimize regret, defined as the maximum difference between the solution’s cost and that of an optimal solution in hindsight once the input has been realized. For graph problems in P, such as shortest path and minimum spanning tree, robust polynomial-time algorithms that obtain a constant approximation on regret are known. In this paper, we study robust algorithms for minimizing regret in NP-hard graph optimization problems, and give constant approximations on regret for the classical traveling salesman and Steiner tree problems. 
    more » « less